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Simple models of small-world networks with directed links
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We investigate the effect of directed short- and long-range connections in a simple model of a small-world
network. Our model is one in which we can determine many quantities of interest by an exact analytical
method. We calculate the functio/(T), defined as the number of sites affected up to timehen a naive
spreading process starts in the network. As opposed to shortcuts, the presence of unfavorable bonds has a
negative effect on this quantity. Hence, the spreading process may not be able to affect all of the network. We
define and calculate a quantity identified as the average size of the accessible world in our model. The interplay
of shortcuts and unfavorable bonds on the small world properties is studied.
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[. INTRODUCTION guantityV(T) may be taken as a crude approximation of the
number of people who have been infected by a contiguous
Real life networks, whether made by natesg., neural, disease aftell time steps has elapsed since the first person
metabolic, and ecological netwopkEl—5], or by humans has been infected. Clearly this is a simplification of the real
(e.g., the World Wide Web, power grids, transport networksphenomena, since in the real world a disease may not affect
and social networks of relations between individuals or insti-an immunized person or may not transmit with certainty dur-
tuteg [6—8], have special features that are a blend of those oihg contact. However, as a first approximatian,T) may
regular networks, on the one hand, and completely randorgive a sensible measure of the effect in the whole network.
ones, on the other hand. To study any process in these neBince in a directed network an effect only spreads to those
works (the spreading of an epidemic in human society, aneighbors into which there are correctly directed links, there
virus in the internet, or an electrical power failure in a largewill be pronounced differences in this important quantity be-
city, to name only a feyy an understanding of their topologi- tween a directed and an undirected network. As a concrete
cal and connectivity properties is essentfal a review, see example, consider a ring witN sites without any shortcuts,
[9] and references therginRecently obtained data from where, to emphasize the absence of shortcuts, we denote
many real networks show that like random netwdrks,11], V(T) by Vo(T). If all the links have the same direction, we
they have a small diameter, and like regular networks, thejnaveVy(T)=T, and if all of them are bidirectional, we have
have high clustering. Since the pioneering work of Watts and/o(T)=2T. In both cases the whole lattice is infected after a
StrogatZ12], these networks have attracted a lot of attentiorfinite time. However, if the links are randomly directed then
and have been studied from various directiph3—17. Vo(T) may be much lower and, furthermore, there is a finite
In contrast to most of the models studied so far, many reaprobability that only a small fraction of the whole lattice
networks such as the World Wide Web, neural networkspecomes infected.
power grids, and metabolic, and ecological networks have Adding shortcuts to this ring of course has a positive ef-
directed one-way link$3,18—2(Q. These types of networks fect on the spreading. In a sense, we have a chance to see the
may have significant differences in both their static and dy-interplay of two different concepts of small worlds in these
namic properties with the Watts-Strog#t'S) model and its  networks. The size of the world as a whole may be small due
variations[19,21,23. The presence of directed links strongly to the ease of communication with the remote points pro-
affects many of the properties of a network. For example, fovided by long-range connections; however, the world acces-
the same pattern of shortcuts, the average shortest path insible to an individual may be small due to the absence of
directed network is longer than that in an undirected one, duproperly directed links to connect it to the outside world.

to the presence of bonds with the wrong directidbl®cks It is therefore natural to ask how the presence of directed
in many paths. So is the spreading time of any dynamidinks and (or) directed shortcuts quantitatively affect the
effect on the lattice. small-world properties of a network. How can we make a

Consider the quantity/(T), defined as the average num- simple model of a small-world network with such random
ber of sites that are visited at least once when we start directions? A WS-type model for these networks may be as
naive spreading process at a site and continue iTfsteps. shown in Fig. 1. However, due to their complexity, these
Note that we mean an average over an ensemble of networketworks should usually be studied by numerical or simula-
and initially infected sites, and by the naive spreading protion methods, and they seldom lend themselves to exact ana-
cess we mean that at each step of the spreading process lylical treatment.
the neighbors of an infected site are equally infected. The

Aim, structure, and results of this paper

*Email address: ramzanpour@mehr.sharif.ac.ir As we will show in this paper, with slight simplification
"Email address: vahid@sharif.edu one can introduce simpler models that, while retaining most
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FIG. 3. A regular ring with randomly directed links without
FIG. 1. AWS-type model of a directed network. shortcuts. You can also see the accessible world of site 1.

of the small world features, are still amenable to analytica=S[Vo(T)]. This may not be an exact relation but as we will
treatment. This is what we are trying to do in this paper. InSe€ it will give a fairly good approximation d¢(T), as

this paper we introduce one such model following our earlieshown by the agreement of our analytical results and the
work [23], which was in turn inspired by the work ¢24]. results of simulations. This then means that, in more compli-
The basic simplifying feature of these networks is that all thecated networks, one can separate the effects of short- and
shortcuts are made via a central site; see Fig. 2. For such!@ng-range connections and superimpose their effect in a
network, many of the small-world quantities can be calcu-Suitable way. We conclude the paper with a discussion.

lated exactly. In particular, oncé(T), defined above, is cal-

culated, many other quantities, such as the average shortest 1l. EXACT CALCULATION OF Vy(T) IN A RING

path between two sites, can be obtained. An exact calculation WITH RANDOM BONDS

of V(T) is, however, difficult for the case where both the
shortcuts and the links have random directions. We thereforFe
proceed in two steps to separate the effects of randomness .'?
the two types of connections. First, in Sec. Il, we remove th tectionally with probability T — /
shortcuts and calculate exacW(T) for a ring with random .

links; see Fig. 3. To emphasize the absence of shortcuts we Thus, we have a problem similar to bond percolation in a
’ 9. °. P small-world network. Suppose that at timie=0 site number

denote this quantity by o(T). Note thatv(T) depends only 1 is infected with a virus. We ask the following questions:
on the structure of the underlying ring and its short-range : '

; . h fAq‘ter T seconds, how many sites have been infected on av-
connections. Then, in Sec. lll, we consider only the effects o : . .
erage? What is the average speed of propagation of this dis-

randomly directed shortcuts, that is, we let directions of the . . )
| - . . ease in the network? These questions have obvious answers
links on the ring be regular and fixed clockwise, and exactly, . ; ) A
. : for rings with regularly directed or bidirectional bonds,

calculateV(T), where again for emphasis on the shortcuts . . .

4 . namely, the number of infected sites are, respectiviegnd
we denote this quantit$(T). ; . : .

We then argue, in Sec. IV, that in the scaling limit WhereZT’ with corresponding speeds of propagation being 1 and
gue, L g 2. In the randomly directed network, the situation is differ-

the number of sites goes to infinity with the number of Short'ent. For example, if both neighbors of site 1 are directed into

cuts kept finite, most of the spreading takes place via the . . Con .
links and only from time to time does it propagate to remote?h's site, this site cannot affect any other site of the network.

points via the shortcuts. In this limit it is plausible to suggestSUCh a site, being effectively isolated, has accessible

a form for V(T) that takes into account the effect of both \(,:th)lggcﬁfsc]::r]:szig(re? t?\l;er(iFlk?t.-hsgl.n-tlj-osi%r:E?Es}ﬂewll.thTeh)((aaC:oCs;biI-
the random links and the shortcuts in the ford(T) ’ 9 ' P

ity that exactlyk<T extra sites to the right have been in-
fected isP. (k) :=(1—/)¥/, and the probability that exactly

T extra sites have been infectedAs (T):=(1—/)". There-
fore, the average number of extra sites infected to the right of
the original site is

Consider a regular ring ol sites whose bonds are di-
cted randomly. Each link may be directed clockwise with
obabilityr, counterclockwise with probability’, and bidi-

T T-1
Vo (=2 kP ()=T(1=/)T+ 2, k(1=
=T(1-/)"+ ;[1—/+(1—/)T(/—1—/T)].
Y
FIG. 2. A simple substitute for the network of Fig. 1. Going to the largeN limit, where
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Vo (T) !

U+(t)‘:T,

2

T
N—co, /~>0, Iu,::/N' t::N'

we find the simple result
+ 1 —ut
vy (t):;(l—e “h. (3

The same type of reasoning gives the number of sites in-
fected to the left, (t), and thus the total number of infected
sites will be

J

vo(t) = i(l—e‘”t)Jrl(l—e‘“), 4 , o
M A FIG. 4. Randomly directed shortcuts added to a ring with clock-

wise links.

where \:=rN. What are the meanings of the scaled vari-

ables? The parametgris the total number of sparse blocked will thus be of interest to see how these two effects compete

sites in the way of propagation to the right, with a similarin a random network where there are both shortcuts and

meaning fork. yy(t) is the fraction of infected sites up to blocks. We will study this in the final section of this paper.

timet. In a bidirectional lattice, all the sites could be infected Toward this end, we first study the effect of directed short-

after the passage ofF=N/2 seconds, or at=3%, and ift  cuts in an otherwise regular ring with no blocks.

passes;, some of the sites become doubly visited. There-

fore, it is plausible, for the sake of comparison, to define a ll. THE LONG-RANGE CONNECTIONS

quantity in our ring, namely, the average size of tdoees-

acc,

sible world asv2%:=v,(2), which turns out to be In this section we consider only the effect of randomly

directed shortcuts in the spreading process and obtain exactly

1 1 the functionS(T) for this network; see Fig. 4. Note that this
WC=—(1-e W)+ _—(1—e M2, (5)  function has the same meaning\a&T), except that for em-

K A phasis on the role of shortcuts in it we have adopted a new
ofame for it. We fix a regular clockwise ring. Between a site
fé"d the center there is a shortcut going into the center with
probability p and out of the center with probability. The

It is seen that the presence of only a small number
blocked bonds causes a significant drop in the average si

of this accessible world. For example, a valuenct =4 . g ) I~
' . site remains unconnected to the center with probability 1
leads tov™~0.4. The Ipng-range connect|or(15h.ortc'ut$ —p—d. The average number of connections intpo and ou}t/ of
make the world small with the ease of communication thatthe center are, respectiveM, :=Np andM,:=Ng
; ) = o:=Ng.

they provide. However, blockades make the world small in : . ; : .
; o Consider sites 1 andWe want to find the probability that
this new sense. The speed of propagation is found from the shortest path between these two sites is of lehgth

probability that we denote by(1,j;1). A typical shortest

. —a—mtyp a—At
vo()=e Fre ©) path of lengthl connecting these two nodes is shown in Fig.
In the symmetric case, whede= 1, Eq. (4) simplifies to 4', where the first inward connectlpn to the center occurs at
sitei and the last outward connection from the center occurs
2 at site j+i—Il. Such a path occurs with probability (1
vp(t)=—(1—e™#, (M) —p)lpg(1—q)''. Summing over all such configurations
® gives us the probability for the shortest path between sites 1
with andj to be of lengthl. Forl#j—1, we have
. |
vo(t)=2e . (8)

P(Liil#i-1)=2 (1-p)" *pa(1-a)"
Note that at the early stages of spreading, where1, and

the effects of blocked bonds have not yet been experienced, _[a-p' -9

the infection propagates with a speed equal to 2, as in a N q-p + p—q |’ ©)
regular network. The effect of blocking comes into play

whent becomes comparable togl/ andp(1,j;j—1) is determined from normalization

As a few shortcuts may enhance the speed of propagation,
a few blocked bonds may have the opposite effect. First, the o _ 1 .
blocks reduce the speed of propagation, as is clear from Eq. P(Li:ii—1)=1- 21 P(1)] ;|):ﬁ(p(1_‘1)J
(6) and second, and more importantly, they reduce the num- _
ber of accessible sites, or the size of the accessible world. It —q(1-p) Y. (10

j—2
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FIG. 5. The speed of propagation in a ring, for several values o

randomly directed shortcuts.

Note thatp(1,j;|#j—1) does not depend on a property
that is true for standard small-world networ&5].
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IV. THE SPREADING EFFECT IN A DIRECTED
SMALL-WORLD NETWORK

We now come to the problem of composing both the
blocks and the shortcuts in a model of a small-world net-
work. That is, we consider the ring of Fig. 2 where randomly
directed shortcuts are added to a ring with randomly directed
links. We cannot obtain exact expressions for this network
from first principle probability considerations. However, we
can obtain expressions foft) in the scaling limit by a heu-
ristic argument and compare our results with those of simu-
lations. Consider Eq(13). This equation shows how the
presence of B randomly directed shortcuts in a regular
clockwise ring affects the spreading effect. On the other
hand, we know that the number of sites infected up to time
in the absence of shortcuts has changed,fo). Due to the
rarity of shortcuts compared to the regular bonds, most of the
spreading takes place via the local bonds. The role of short-
cuts is simply to make multiple spreading processes happen
;n different regions of the network. This role is the same for
whatever the underlying lattice is and, therefore, for a gen-
eral network, at least in the scaling regime, we can assume
that Eq.(13) can be elevated to(t) =s[ vy(t)], i.e.,

v(t)=1—[1—vo(t)][1+Mup(t)Je"Mw® (15

Now consider a naive spreading process starting at site 1.

The number of sites affected up to timedenoted byS(T),

For a fully random network whereN randomly directed

builds up in two ways: via the links on the ring and via the shortcuts are distributed on a ring with already random links,

shortcuts. The first way gives a contributidnt1 and the
second way gives a contributiorNeT—1)E|T=1p(1,j;I)

we assume that this relation holds true wiggt) taken from
Eqg. (4). This suggestion may not provide an exact solution

[25], where N—T—1) is the number of sites beyond direct for the network. However, we think it provides a fairly good
reach at timeT, which has been multiplied by the probability approximation. In fact, exact solution for the case where all

of any of these sites being a distance shorter thénom site
1 via a shortcut. Putting this together we find

;
S(T)=T+1+(|\1—T—1)Iz1 P(Lj:)=N+(N-T-1)

x| (1-p) T (1-)T* . D)

pP—q a-p

In the scaling limit whereN—o0, p,q—0, and whereM;
andM are kept fixed and(t):=S(T)/N, we find

1-t

T (M.e Mot _ —M;t
Mi—MO(M'e M.e ).

s(t)=1— (12

In the symmetric case, whelM;,=M =M, this equation
simplifies to

s(t)=1—(1—t)(1+Mt)e M (13
with the speed of propagation
s()=e " M(1+Mt+M2t—M?2t2?). (14)

Figure(5) shows the speed of propagation as a function of

time for several values dfl.

the links on the ring are bidirectional is possible and it con-
firms the above ansatz, that is, we obtain an exact expression
only by settingvy(t)=2t in the above formula. Moreover,
this separation of the effect of short- and long-range connec-
tions may also be useful in more complicated networks.
Whether or not this assumption is plausible can be checked
by comparison with simulations. The results of simulations
are compared with those of Eq4) and12) in Figs. (6) and

(7).

V. STATIC PROPERTIES

Once the function®/(T) or v(t) are obtained, the static
properties of the network, i.e., the average shortest path be-
tween two arbitrary sites and its probability distribution, can
be calculated directly.

Since V(T) by definition is the number of sites whose
shortest distance to site 1 is less than or equdl, teve find
the number of sites whose shortest distance is exadiybe
V(T)—V(T—1). Since site 1 is an arbitrary site, we find the
probability distribution of the shortest distance between two
arbitrary sites that are accessible to each otheP&F)
=[V(T)—V(T—1)]/V,ec, WhereV,..is the average size of
the accessible worldThere is of course a slight approxima-
tion here in that we are taking averages of the denominator
and numerator separately.

For a regular ring with shortcuty/,..=N, since all the
sites are accessible. We will discuss the case of random rings
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6000 T T T T T 1.1 T T T T

V(T)

FIG. 6. V(T) for a fully random network in the casél Eh 0 P s P o
=5000,r=0.02,1=0. Analytic resultglines) vs simulationgsym- n
bols), which have been averaged over 1000 realizations of the net-
work. FIG. 8. The average size of the accessible world and the average

shortest path for a regular ring with randomly directed bonds with-
in a sequel to this paper. In the scaling regime, the aboveut shortcuts.
formulas transform to
This is in accord with the result ¢24]. This formula shows
that the presence of a small number of shortcuts causes a
significant drop in the average shortest path from 1 to very

P()=u(1). (18 small values. In this sense, the world gets smaller by long-

range connections.
Note thatP(t) is normalized, i.e.[gP(t)dt=wv(1)—v(0) We now study the static effects of random directed bonds
=1. The average shortest path for the network of Fig. 40N & ring without shortcuts. The presence of blocks makes
whenM;=M,=M turns out to be the world small in a different sense, namely, for each site the

number of accessible sites gets smaller. In fact, the average
size of the world accessible to a site is hoanymore, but is
. ) . given by V(N/2) [see the paragraph leading to E®)].
— _ N _ M Hence, the probability of shortest paths is given B{T)
{t) fotp(t)dt fot”(t) yzlZM =3 (ME3)e Tl Ty = V(T—1)]/V(NI2). or in the scaling limit by
17

u(t)

T T T T T ( ):: (1) .
Y2
This probability is normalized, i.ef3?P(t)dt=1. We ob-

p=0015,q=001 - tain from Eq.(18)

(18

p=002,q=0015

] 1 12 .
p=001,q=0005 (t)= TJ tu(t)dt. (19
0
{3
However, in order to assess the situation in this network, we
should compare the average shortest path with the size of
this small world itself, namely, we should calculdtg/v5°c.

pems 20 Inserting Eq.(7) into Eqg. (19), we find

FIG. 7. V(T) for a fully random network in the casél ty 2—(u+ z)e*M/Z
=5000, r=1=0.005. Analytic resultglines) vs simulations(sym- e T o (20)
bols). v 4(1-e (i ))
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: T y T For the fully random network, we use Eq45) and(18)
os% u=10 + to obtain the average of shortest path. The result is shown in
Fig. (9) for several values of the parameters.

VI. CONCLUSION
.l We have studied the effect of directed short- and long-

range connections in a simple model of a small-world net-
work. In our models, all the shortcuts pass via a central site
in the network. This makes possible an almost exact calcu-
lation of many of the properties of the network. We have
calculated the functioW(T), defined as the number of sites
affected up to timel when a naive spreading process starts
in the network. As opposed to shortcuts, the presence of
unfavorable bonds has a negative effect on this quantity.
Hence, the spreading process may be able to affect only a
fraction of the total sites of the network. We have defined
FIG. 9. The average shortest path for a fully random network_this fraction to be the average si_ze of the accessible world in

our model and have calculated it exactly for our model. We

have also studied the interplay of shortcuts and unfavorable
Figure (8) shows both the average size of the accessibl§onds on the small-world properties, such as the size of the
world v5° and the ratiq(t)/v§"° of the average shortest path accessible world, the speed of propagation of a spreading
to the size of the accessible world as a function of the numprocess, and the average shortest path between two arbitrary
ber of blocksu. It is seen that fou=0, when there is no sites. Our results show that one can separately take into ac-
block, the size is 1 and the average of the shortest pagh is count the effect of randomness in the directions of shortcuts
as it should be. With a few blocks, the size drops dramatiand the short-range connections in the underlying lattice,
cally and the average of the shortest path within the worldcand, at the end, superimpose the two effects in a suitable
increases. Note that with increasipgthe average shortest way. We expect that this will also hold in more complicated
path increases to its maximum value Jf lattices of small-world networks.
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