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Simple models of small-world networks with directed links

A. Ramezanpour* and V. Karimipour†

Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran
~Received 12 May 2002; published 24 September 2002!

We investigate the effect of directed short- and long-range connections in a simple model of a small-world
network. Our model is one in which we can determine many quantities of interest by an exact analytical
method. We calculate the functionV(T), defined as the number of sites affected up to timeT when a naive
spreading process starts in the network. As opposed to shortcuts, the presence of unfavorable bonds has a
negative effect on this quantity. Hence, the spreading process may not be able to affect all of the network. We
define and calculate a quantity identified as the average size of the accessible world in our model. The interplay
of shortcuts and unfavorable bonds on the small world properties is studied.
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I. INTRODUCTION

Real life networks, whether made by nature~e.g., neural,
metabolic, and ecological networks! @1–5#, or by humans
~e.g., the World Wide Web, power grids, transport networ
and social networks of relations between individuals or in
tutes! @6–8#, have special features that are a blend of thos
regular networks, on the one hand, and completely rand
ones, on the other hand. To study any process in these
works ~the spreading of an epidemic in human society
virus in the internet, or an electrical power failure in a lar
city, to name only a few!, an understanding of their topolog
cal and connectivity properties is essential~for a review, see
@9# and references therein!. Recently obtained data from
many real networks show that like random networks@10,11#,
they have a small diameter, and like regular networks, t
have high clustering. Since the pioneering work of Watts a
Strogatz@12#, these networks have attracted a lot of attent
and have been studied from various directions@13–17#.

In contrast to most of the models studied so far, many r
networks such as the World Wide Web, neural networ
power grids, and metabolic, and ecological networks h
directed one-way links@3,18–20#. These types of network
may have significant differences in both their static and
namic properties with the Watts-Strogatz~WS! model and its
variations@19,21,22#. The presence of directed links strong
affects many of the properties of a network. For example,
the same pattern of shortcuts, the average shortest path
directed network is longer than that in an undirected one,
to the presence of bonds with the wrong directions~blocks!
in many paths. So is the spreading time of any dynam
effect on the lattice.

Consider the quantityV(T), defined as the average num
ber of sites that are visited at least once when we sta
naive spreading process at a site and continue it forT steps.
Note that we mean an average over an ensemble of netw
and initially infected sites, and by the naive spreading p
cess we mean that at each step of the spreading proce
the neighbors of an infected site are equally infected. T
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quantityV(T) may be taken as a crude approximation of t
number of people who have been infected by a contigu
disease afterT time steps has elapsed since the first per
has been infected. Clearly this is a simplification of the r
phenomena, since in the real world a disease may not a
an immunized person or may not transmit with certainty d
ing contact. However, as a first approximation,V(T) may
give a sensible measure of the effect in the whole netwo
Since in a directed network an effect only spreads to th
neighbors into which there are correctly directed links, th
will be pronounced differences in this important quantity b
tween a directed and an undirected network. As a conc
example, consider a ring withN sites without any shortcuts
where, to emphasize the absence of shortcuts, we de
V(T) by V0(T). If all the links have the same direction, w
haveV0(T)5T, and if all of them are bidirectional, we hav
V0(T)52T. In both cases the whole lattice is infected afte
finite time. However, if the links are randomly directed th
V0(T) may be much lower and, furthermore, there is a fin
probability that only a small fraction of the whole lattic
becomes infected.

Adding shortcuts to this ring of course has a positive
fect on the spreading. In a sense, we have a chance to se
interplay of two different concepts of small worlds in the
networks. The size of the world as a whole may be small d
to the ease of communication with the remote points p
vided by long-range connections; however, the world acc
sible to an individual may be small due to the absence
properly directed links to connect it to the outside world.

It is therefore natural to ask how the presence of direc
links and ~or! directed shortcuts quantitatively affect th
small-world properties of a network. How can we make
simple model of a small-world network with such rando
directions? A WS-type model for these networks may be
shown in Fig. 1. However, due to their complexity, the
networks should usually be studied by numerical or simu
tion methods, and they seldom lend themselves to exact
lytical treatment.

Aim, structure, and results of this paper

As we will show in this paper, with slight simplification
one can introduce simpler models that, while retaining m
©2002 The American Physical Society28-1
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A. RAMEZANPOUR AND V. KARIMIPOUR PHYSICAL REVIEW E66, 036128 ~2002!
of the small world features, are still amenable to analyti
treatment. This is what we are trying to do in this paper.
this paper we introduce one such model following our ear
work @23#, which was in turn inspired by the work of@24#.
The basic simplifying feature of these networks is that all
shortcuts are made via a central site; see Fig. 2. For su
network, many of the small-world quantities can be calc
lated exactly. In particular, onceV(T), defined above, is cal
culated, many other quantities, such as the average sho
path between two sites, can be obtained. An exact calcula
of V(T) is, however, difficult for the case where both th
shortcuts and the links have random directions. We there
proceed in two steps to separate the effects of randomne
the two types of connections. First, in Sec. II, we remove
shortcuts and calculate exactlyV(T) for a ring with random
links; see Fig. 3. To emphasize the absence of shortcuts
denote this quantity byV0(T). Note thatV0(T) depends only
on the structure of the underlying ring and its short-ran
connections. Then, in Sec. III, we consider only the effects
randomly directed shortcuts, that is, we let directions of
links on the ring be regular and fixed clockwise, and exac
calculateV(T), where again for emphasis on the shortc
we denote this quantityS(T).

We then argue, in Sec. IV, that in the scaling limit whe
the number of sites goes to infinity with the number of sho
cuts kept finite, most of the spreading takes place via
links and only from time to time does it propagate to rem
points via the shortcuts. In this limit it is plausible to sugge
a form for V(T) that takes into account the effect of bo
the random links and the shortcuts in the formV(T)

FIG. 1. A WS-type model of a directed network.

FIG. 2. A simple substitute for the network of Fig. 1.
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5S@V0(T)#. This may not be an exact relation but as we w
see it will give a fairly good approximation ofV(T), as
shown by the agreement of our analytical results and
results of simulations. This then means that, in more com
cated networks, one can separate the effects of short-
long-range connections and superimpose their effect i
suitable way. We conclude the paper with a discussion.

II. EXACT CALCULATION OF V0„T… IN A RING
WITH RANDOM BONDS

Consider a regular ring ofN sites whose bonds are d
rected randomly. Each link may be directed clockwise w
probability r, counterclockwise with probabilityl , and bidi-
rectionally with probability 12r 2l .

Thus, we have a problem similar to bond percolation in
small-world network. Suppose that at timeT50 site number
1 is infected with a virus. We ask the following question
After T seconds, how many sites have been infected on
erage? What is the average speed of propagation of this
ease in the network? These questions have obvious ans
for rings with regularly directed or bidirectional bond
namely, the number of infected sites are, respectively,T and
2T, with corresponding speeds of propagation being 1 a
2. In the randomly directed network, the situation is diffe
ent. For example, if both neighbors of site 1 are directed i
this site, this site cannot affect any other site of the netwo
Such a site, being effectively isolated, has anaccessible
world @18# of zero size~Fig. 3!. To proceed with exact cal
culation, consider the right-hand side of site 1. The proba
ity that exactlyk,T extra sites to the right have been in
fected isP1(k)ª(12l )kl , and the probability that exactly
T extra sites have been infected isP1(T)ª(12l )T. There-
fore, the average number of extra sites infected to the righ
the original site is

V0
1~T!5 (

k51

T

kP1~k!5T~12l !T1 (
k50

T21

k~12l !kl

5T~12l !T1
1

l
@12l 1~12l !T~ l 212l T!#.

~1!

Going to the largeN limit, where

FIG. 3. A regular ring with randomly directed links withou
shortcuts. You can also see the accessible world of site 1.
8-2
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SIMPLE MODELS OF SMALL-WORLD NETWORKS WITH . . . PHYSICAL REVIEW E66, 036128 ~2002!
N→`, l →0, mªl N, tª
T

N
, y1~ t !ª

V0
1~T!

N
,

~2!

we find the simple result

y0
1~ t !5

1

m
~12e2mt!. ~3!

The same type of reasoning gives the number of sites
fected to the lefty0

2(t), and thus the total number of infecte
sites will be

y0~ t !5
1

m
~12e2mt!1

1

l
~12e2lt!, ~4!

where lªrN. What are the meanings of the scaled va
ables? The parameterm is the total number of sparse blocke
sites in the way of propagation to the right, with a simil
meaning forl. y0(t) is the fraction of infected sites up t
time t. In a bidirectional lattice, all the sites could be infect
after the passage ofT5N/2 seconds, or att5 1

2 , and if t
passes1

2 , some of the sites become doubly visited. The
fore, it is plausible, for the sake of comparison, to defin
quantity in our ring, namely, the average size of theacces-

sible world asy0
acc

ªy0( 1
2 ), which turns out to be

y0
acc5

1

m
~12e2(m/2)!1

1

l
~12e2(l/2)!. ~5!

It is seen that the presence of only a small number
blocked bonds causes a significant drop in the average
of this accessible world. For example, a value ofl5m54
leads toy0

acc;0.4. The long-range connections~shortcuts!
make the world small with the ease of communication t
they provide. However, blockades make the world smal
this new sense. The speed of propagation is found from

ẏ0~ t !5e2mt1e2lt. ~6!

In the symmetric case, wherel5m, Eq. ~4! simplifies to

y0~ t !5
2

m
~12e2mt!, ~7!

with

ẏ0~ t !52e2mt. ~8!

Note that at the early stages of spreading, whenmt!1, and
the effects of blocked bonds have not yet been experien
the infection propagates with a speed equal to 2, as
regular network. The effect of blocking comes into pl
when t becomes comparable to 1/m.

As a few shortcuts may enhance the speed of propaga
a few blocked bonds may have the opposite effect. First,
blocks reduce the speed of propagation, as is clear from
~6! and second, and more importantly, they reduce the n
ber of accessible sites, or the size of the accessible worl
03612
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will thus be of interest to see how these two effects comp
in a random network where there are both shortcuts
blocks. We will study this in the final section of this pape
Toward this end, we first study the effect of directed sho
cuts in an otherwise regular ring with no blocks.

III. THE LONG-RANGE CONNECTIONS

In this section we consider only the effect of random
directed shortcuts in the spreading process and obtain ex
the functionS(T) for this network; see Fig. 4. Note that th
function has the same meaning asV(T), except that for em-
phasis on the role of shortcuts in it we have adopted a n
name for it. We fix a regular clockwise ring. Between a s
and the center there is a shortcut going into the center w
probability p and out of the center with probabilityq. The
site remains unconnected to the center with probability
2p2q. The average number of connections into and ou
the center are, respectively,MiªNp andMoªNq.

Consider sites 1 andj. We want to find the probability tha
the shortest path between these two sites is of lengthl, a
probability that we denote byP(1,j ; l ). A typical shortest
path of lengthl connecting these two nodes is shown in F
4, where the first inward connection to the center occurs
site i and the last outward connection from the center occ
at site j 1 i 2 l . Such a path occurs with probability (
2p) i 21pq(12q) l 2 i . Summing over all such configuration
gives us the probability for the shortest path between site
and j to be of lengthl. For lÞ j 21, we have

p~1,j ; lÞ j 21!5(
i 51

l

~12p! i 21pq~12q! l 2 i

5pqF ~12p! l

q2p
1

~12q! l

p2q G , ~9!

andp(1,j ; j 21) is determined from normalization

P~1,j ; j 21!512(
l 51

j 22

P~1,j ; l !5
1

p2q
~p~12q! j 21

2q~12p! j 21!. ~10!

FIG. 4. Randomly directed shortcuts added to a ring with clo
wise links.
8-3
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A. RAMEZANPOUR AND V. KARIMIPOUR PHYSICAL REVIEW E66, 036128 ~2002!
Note thatp(1,j ; lÞ j 21) does not depend onj, a property
that is true for standard small-world networks@25#.

Now consider a naive spreading process starting at sit
The number of sites affected up to timeT, denoted byS(T),
builds up in two ways: via the links on the ring and via t
shortcuts. The first way gives a contributionT11 and the
second way gives a contribution (N2T21)( l 51

T p(1,j ; l )
@25#, where (N2T21) is the number of sites beyond dire
reach at timeT, which has been multiplied by the probabilit
of any of these sites being a distance shorter thanT from site
1 via a shortcut. Putting this together we find

S~T!5T111~N2T21!(
l 51

T

P~1,j ; l !5N1~N2T21!

3F q

p2q
~12p!T111

p

q2p
~12q!T11G . ~11!

In the scaling limit whereN→`, p,q→0, and whereMi
andMo are kept fixed ands(t)ªS(T)/N, we find

s~ t !512
12t

M i2Mo
~Mie

2Mot2Moe2Mit!. ~12!

In the symmetric case, whereMi5Mo5M , this equation
simplifies to

s~ t !512~12t !~11Mt !e2Mt ~13!

with the speed of propagation

ṡ~ t !5e2Mt~11Mt1M2t2M2t2!. ~14!

Figure~5! shows the speed of propagation as a function
time for several values ofM.

FIG. 5. The speed of propagation in a ring, for several value
randomly directed shortcuts.
03612
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IV. THE SPREADING EFFECT IN A DIRECTED
SMALL-WORLD NETWORK

We now come to the problem of composing both t
blocks and the shortcuts in a model of a small-world n
work. That is, we consider the ring of Fig. 2 where random
directed shortcuts are added to a ring with randomly direc
links. We cannot obtain exact expressions for this netw
from first principle probability considerations. However, w
can obtain expressions fory(t) in the scaling limit by a heu-
ristic argument and compare our results with those of sim
lations. Consider Eq.~13!. This equation shows how th
presence of 2M randomly directed shortcuts in a regul
clockwise ring affects the spreading effect. On the oth
hand, we know that the number of sites infected up to timt
in the absence of shortcuts has changed toy0(t). Due to the
rarity of shortcuts compared to the regular bonds, most of
spreading takes place via the local bonds. The role of sh
cuts is simply to make multiple spreading processes hap
in different regions of the network. This role is the same
whatever the underlying lattice is and, therefore, for a g
eral network, at least in the scaling regime, we can assu
that Eq.~13! can be elevated toy(t)5s@y0(t)#, i.e.,

y~ t !512@12y0~ t !#@11My0~ t !#e2My0(t). ~15!

For a fully random network where 2M randomly directed
shortcuts are distributed on a ring with already random lin
we assume that this relation holds true withy0(t) taken from
Eq. ~4!. This suggestion may not provide an exact soluti
for the network. However, we think it provides a fairly goo
approximation. In fact, exact solution for the case where
the links on the ring are bidirectional is possible and it co
firms the above ansatz, that is, we obtain an exact expres
only by settingy0(t)52t in the above formula. Moreover
this separation of the effect of short- and long-range conn
tions may also be useful in more complicated networ
Whether or not this assumption is plausible can be chec
by comparison with simulations. The results of simulatio
are compared with those of Eqs.~4! and~12! in Figs. ~6! and
~7!.

V. STATIC PROPERTIES

Once the functionsV(T) or y(t) are obtained, the static
properties of the network, i.e., the average shortest path
tween two arbitrary sites and its probability distribution, c
be calculated directly.

Since V(T) by definition is the number of sites whos
shortest distance to site 1 is less than or equal toT, we find
the number of sites whose shortest distance is exactlyT to be
V(T)2V(T21). Since site 1 is an arbitrary site, we find th
probability distribution of the shortest distance between t
arbitrary sites that are accessible to each other asP(T)
5@V(T)2V(T21)#/Vacc , whereVacc is the average size o
the accessible world.~There is of course a slight approxima
tion here in that we are taking averages of the denomin
and numerator separately.!

For a regular ring with shortcuts,Vacc5N, since all the
sites are accessible. We will discuss the case of random r

f

8-4
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SIMPLE MODELS OF SMALL-WORLD NETWORKS WITH . . . PHYSICAL REVIEW E66, 036128 ~2002!
in a sequel to this paper. In the scaling regime, the ab
formulas transform to

P~ t !5 ẏ~ t !. ~16!

Note that P(t) is normalized, i.e.,*0
1P(t)dt5y(1)2y(0)

51. The average shortest path for the network of Fig
whenMi5Mo5M turns out to be

^t&[E
0

1

tP~ t !dt5E
0

1

t ẏ~ t !5
1

M2
@2M231~M13!e2M#.

~17!

FIG. 6. V(T) for a fully random network in the caseN
55000,r 50.02, l 50. Analytic results~lines! vs simulations~sym-
bols!, which have been averaged over 1000 realizations of the
work.

FIG. 7. V(T) for a fully random network in the caseN
55000, r 5 l 50.005. Analytic results~lines! vs. simulations~sym-
bols!.
03612
e
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This is in accord with the result of@24#. This formula shows
that the presence of a small number of shortcuts caus
significant drop in the average shortest path from 1 to v
small values. In this sense, the world gets smaller by lo
range connections.

We now study the static effects of random directed bon
on a ring without shortcuts. The presence of blocks ma
the world small in a different sense, namely, for each site
number of accessible sites gets smaller. In fact, the ave
size of the world accessible to a site is notN anymore, but is
given by V(N/2) @see the paragraph leading to Eq.~5!#.
Hence, the probability of shortest paths is given byP(T)
ª@V(T)2V(T21)#/V(N/2), or in the scaling limit by

P~ t !ª
ẏ~ t !

yS 1

2D . ~18!

This probability is normalized, i.e.,*0
1/2P(t)dt51. We ob-

tain from Eq.~18!

^t&5
1

yS 1

2D E0

1/2

t ẏ~ t !dt. ~19!

However, in order to assess the situation in this network,
should compare the average shortest path with the siz
this small world itself, namely, we should calculate^t&/y0

acc .
Inserting Eq.~7! into Eq. ~19!, we find

^t&

y0
acc

5
22~m12!e2m/2

4~12e2(m/2)!2
. ~20!

t-
FIG. 8. The average size of the accessible world and the ave

shortest path for a regular ring with randomly directed bonds w
out shortcuts.
8-5
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A. RAMEZANPOUR AND V. KARIMIPOUR PHYSICAL REVIEW E66, 036128 ~2002!
Figure ~8! shows both the average size of the access
world y0

acc and the ratiô t&/y0
acc of the average shortest pa

to the size of the accessible world as a function of the nu
ber of blocksm. It is seen that form50, when there is no
block, the size is 1 and the average of the shortest path i1

4 ,
as it should be. With a few blocks, the size drops dram
cally and the average of the shortest path within the wo
increases. Note that with increasingm the average shortes
path increases to its maximum value of1

2 .

FIG. 9. The average shortest path for a fully random netwo
.A

-

nt

y,
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For the fully random network, we use Eqs.~15! and ~18!
to obtain the average of shortest path. The result is show
Fig. ~9! for several values of the parameters.

VI. CONCLUSION

We have studied the effect of directed short- and lon
range connections in a simple model of a small-world n
work. In our models, all the shortcuts pass via a central
in the network. This makes possible an almost exact ca
lation of many of the properties of the network. We ha
calculated the functionV(T), defined as the number of site
affected up to timeT when a naive spreading process sta
in the network. As opposed to shortcuts, the presence
unfavorable bonds has a negative effect on this quan
Hence, the spreading process may be able to affect on
fraction of the total sites of the network. We have defin
this fraction to be the average size of the accessible worl
our model and have calculated it exactly for our model. W
have also studied the interplay of shortcuts and unfavora
bonds on the small-world properties, such as the size of
accessible world, the speed of propagation of a spread
process, and the average shortest path between two arb
sites. Our results show that one can separately take into
count the effect of randomness in the directions of shortc
and the short-range connections in the underlying latt
and, at the end, superimpose the two effects in a suita
way. We expect that this will also hold in more complicat
lattices of small-world networks.
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